数列{an}的通项公式为an=1⼀n(n+2),求Sn

2025-12-25 11:13:51
推荐回答(1个)
回答1:

an=1/n(n+2) = (1/2)*[1/n - 1/(n+2) ]
Sn = a1+a2+a3+...+an
=(1/2)*(1/1-1/3) + (1/2)*(1/2-1/4)+(1/2)*(1/3-1/5)+.....+(1/2)*[1/n - 1/(n+2) ]
=(1/2)*(1/1+1/2) + (1/2)*[-1/(n+1) - 1/(n+2) ]
说明:除前两项和最后两项,其他项必然被抵消
= 0.75 - 0.5 *[1/(n+1) + 1/(n+2) ]