an=1/n(n+2) = (1/2)*[1/n - 1/(n+2) ]Sn = a1+a2+a3+...+an=(1/2)*(1/1-1/3) + (1/2)*(1/2-1/4)+(1/2)*(1/3-1/5)+.....+(1/2)*[1/n - 1/(n+2) ]=(1/2)*(1/1+1/2) + (1/2)*[-1/(n+1) - 1/(n+2) ] 说明:除前两项和最后两项,其他项必然被抵消= 0.75 - 0.5 *[1/(n+1) + 1/(n+2) ]