limx→0 (x-sinx)/(x-tanx),(0/0型,洛必塔法则求导)
=limx→0 (1-cosx)/(1-sec^2x),
=limx→0 2sin^2(x/2)/(-tan^2x),(sinx/2~x/2,tanx~x,替换)
=limx→0 2*(x/2)^2/(-x^2),
=-1/2。
连续使用L'Hospital Rule
lim x→0 (x-sinx)/(x-tanx)
=lim x→0 (1-cosx)/(1-(secx)^2)
=lim x→0 (sinx)/(-2secx·secx·tanx)
=lim x→0 -(cosx)^3/2
=-1/2